
Correlation Detector Simulation

Some range detection applications use a system that sends out a pulse and waits for a return
echo of the pulse. The time between the transmission of the original pulse and the reception
of the echo may be used to compute the range of whatever reflected the pulse if the
properties of the medium through which the pulse propagates are known. The return signal,
however, has added noise, which may obscure the reflected pulse. One method of enhancing
the received signal is time correlation of the transmitted pulse and the received signal.

For this project you are to write a Windows application that simulates a correlation detector.
The results should be presented to the user in graphical form. The screen shot below
illustrates what part of the graphical output might look like. There are three labels used to
plot the results of a simulation for a particular choice of parameters.

Each of the three plots have x and y axis scales of -1000 to 1000. A coordinate transform
was used in the program to make the plotting more convenient. The top plot shows a
simulated transmitted pulse starting at x = -1000. Note that a scale of 0 to 2000 could just as
well been used for x; it would have been a better choice. Your x scale should start at 0. The
transmitted pulse plotted was)2sin(100 20

nπ with n ranging from 0 to 199, producing about
ten cycles.

The second plot shows the same pulse starting at x = 200 with added uniform noise. The
noise was simulated as an array of points determined as

 // calculate noise
 Random rangen = new Random();
 for (int n = 0; n < 2000; n++)
 {

 npt[n].X = (n - 1000);
 npt[n].Y = 300 * (2 * Convert.ToSingle(rangen.NextDouble()) - 1);
 }

The code snippet illustrates the use of one of the methods in the System.Random class.
NextDouble() returns a double between 0 and 1. The part of the statement in parentheses
produces random numbers between -1 and 1, and the multiplier of 300 is the amplitude of the
noise in the units used for the plot. This noise is added to the delayed version of the
transmitted pulse to produce the simulated received signal in the plot.

The third plot shows the time correlation of the transmitted and received signals computed as

follows: ∑
−−

=
+=

kN

m
mkm yxkR

1

0
)(where xm is a sample of the transmitted signal and yk+m is a

sample of the return signal. Note that although the noise amplitude was three times the
transmitted pulse amplitude, the time correlation makes it much easier to determine the delay
of the returned pulse. Both arrays x and y are of size N, and k ranges from 0 to N-1.

Your program should allow the user to choose the duration of the transmitted pulse, the
time delay of the pulse in the received signal, and the amplitude and type of noise added to
the delayed pulse to simulate the received signal. The example above used random noise
uniformly distributed between -1 and +1 as the basic noise model, multiplied by an amplitude
factor (300 in the code snippet shown). Your program should allow the user to select either
the uniform noise model or a gaussian noise model. If the gaussian model is used, the
program should allow the user to select the standard deviation σ as well.

The gaussian noise model for this program assumes that the noise at any point is a multiple
(amplitude factor) of a zero-mean gaussian random variable with standard deviation σ.
Sample values of the gaussian random variable may be generated from random numbers
uniformly distributed between 0 and 1, such as returned by the Random.NextDouble()
method in the code snippet above. The following method is described in Numerical Recipes
in C, 2nd Edition.

If x1 and x2 are sequences of uniformly (0,1) random numbers,
both 211 2cosln2 xxy π−= and 212 2sinln2 xxy π−= are
sequences of gaussian random numbers with unity standard
deviation.

 Zero-mean gaussian random sequences of stadard deviation σ may then be generated from
y1 and y2 as z1 = σy1 and z2 = σy2 .

The plots in your program should have appropriately labeled tic marks on the axes. The x
axes should all start with zero at the left, while the y axes should have zero in the center of
the vertical extent of the plot.

One more feature your program should include is the display of a histogram of the noise
samples, so the user may examine the noise sample distribution. The histogram should be
implemented as a method in a class of its own. The method should accept as parameters an

array of points, and an array of bin centers. Output should be returned as an array of counts
and bin centers. This method could then be used by future programs by including the class as
a library. The arrays returned could then be used to produce a histogram. A histogram for
the gaussian model should extend from -4σ to 4σ .

