Simulation and Implication using a Transfer Function Model for Switching Logic

Bobby B. Lyle SCHOOL OF ENGINEERING

By: David Kebo Houngninou, Advisor: Dr. Mitch Thornton Computer Science and Engineering Department, Bobby B. Lyle School of Engineering Southern Methodist University, P.O. Box 750122, Dallas, TX 75275-0122

Implication is the inverse problem of simulation. In this case, an output response and the characterization of a logic network are known and it is possible to compute the corresponding input stimuli.

$$
\langle\mathrm{X}|=\langle\mathrm{f}| \mathrm{T}^{-1}
$$

The inverse transfer function T^{-1} is used to determine a corresponding input stimulus given an output response.

EXPERIMENTAL RESULTS				
NAME IN/OUT STAGES PARTITION TIME (ms) MATRIX TIME $(\mathbf{m s})$ i3 $2 / 3$ 3 3.00 5.505 test1 $3 / 3$ 6 7.28 4.794 xor5 $5 / 1$ 4 1.73 6.882 majority $5 / 1$ 6 11.8 17.71 C17 $5 / 2$ 7 5.00 22.75 rd53 $5 / 3$ 6 5.32 10.10 squar5 $5 / 8$ 9 19.5 922.1 con1 $7 / 2$ 6 7.09 546.1 rd73 $7 / 3$ 8 5.01 37.33 radd $8 / 5$ 11 12.3 1107 $\mathbf{x 2}$ $10 / 7$ 9 11.4 846.2 cm85a $11 / 3$ 11 9.78 1586.2 alu1 $12 / 8$ 5 8.88 521.9				

APPLICATIONS	
EDA Tools implication and simulation	
Satisfiability	
Equivalence checking	

